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Abstract. An analogue of Shirley's equation for a spin-1 system subjected to a periodic 
perturbation is derived, and shown to be consistent with the results of Brossel and Bitter. 

In a well known paper, Shirley (1965) obtained the following equation for the 
time-averaged probability, FfL2) for transitions between the two states (a) and I@) of a 
spin-$ system under the influence of a periodic classical field coupled to the spin 
system: 

where oo is the difference in energy between la) and I@) and q is the so called Floquet, 
or characteristic exponent. This remarkable result enables one to sketch the time- 
averaged transition probability directly from a plot of the characteristic exponent, and 
has been used as the starting point in many papers which calculate the Bloch-Siegert 
shift and multiple quantum resonances in strong oscillating fields (see for example the 
references cited in Swain 1974, and Bialynicka-Birula and Bialynicka-Birula 1976). 

In this paper we obtain a generalization of (1) which applies to a symmem'cthree- 
level system (for brevity we will refer to such a system as a spin-1 system) which has a 
Hamiltonian periodic in time with frequency o. An example of such a system is 
provided by the 63P1 excited state of the mercury atom, which was investigated by 
Brossel and Bitter (1952) in their double resonance experiments. In their theory of 
these experiments the rotating wave approximation (RWA) was assumed, so that the 
Hamiltonian may be written in the form 

H =  C l i ) ~ ~ ( i l +  v(la)(pl e-'"'+Iy)(PI e'"'+Hc) (2) 
I = d , r  

where /3 now denotes the middle level, a and y the extreme levels; HC stands for 
Hermitian conjugate. For the system to be symmetric the energy levels must be equally 
spaced, i.e. E, -E, = E, -E,. = oo, say. The coupling constant Vis proportional to the 
applied RF magnetic field (for simplicity we have taken V to be real) and wo is 
proportional to the DC magnetic field. It is clear that (2) describes a situation in which 
the middle level is connected to the two outer levels by the FW field, but the two outer 
levels are not connected directly. Before giving this system further consideration we 
will first obtain our general result. 

1947 



1948 J Hermann and S Swain 

According to Shirley (1965) (see also Stey and Gusman 1974) the time-averaged 
transition probability between any two levels k and 1 of a three-level system is given by 
the expression 

where qa, q, and qy, the Floquet exponents, satisfy the condition 

In particular, for k = 1 = p, we have 

p;; = (""-)2+ (*) * + (%)2 

aE, aE, aE, ' 

For the special case of a spin-1 atom we have the symmetry relation 

aqylaE, = aqa/aEp, (6) 

so that expression (5) reduces to 

However, by differentiating expression (4) with respect to E,, and using expression (6), 
we obtain 

so that pgi may be expressed in terms of aq,/aE, alone as 

Also by symmetry we have 
7 1 ) -  71) 

and conservation of probability implies 

Pa, - PYP 

p:;+p;;+p;;= 1. 

Hence 

Expression (12) is the desired result: an analogue of Shirley's equation applicable to a 
spin-1 system. The transition probability is expressed in terms of a derivative of just 
one of the Floquet exponents. 

In the Brossel-Bitter experiments the measured quantity is essentially p:; as a 
function of WO.  The most obvious features of the spectrum are its maxima and minima. 
It is easily seen from (12) that the maxima of p$! occur when the condition 

aqp/aE, = 3 (13) 
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is satisfied, and that the minima with respect to a parameter z (such as w or W O )  occur 
when 

Expressions (13) and (14) can be used to investigate the resonances of any spin-1 system 
from a knowledge of qs alone. 

We conclude by showing that expression (12) is consistent with that obtained by 
Brossel and Bitter (1952) when the natural lifetime of the atomic levels may be 
neglected. Adopting the Hamiltonian (2) and substituting the following ansatz for the 
wavefunction in the time-dependent Schrodinger equation; 

one readily obtains the following equations for the coefficients a,, 6, and c, : 

(4 -nw -&)an = a n + l  (16a) 

(q  - no -Eo )b, = V(an-l+ Cn+1) (16b) 

(q-nw-E,)cn = Vb,-1. ( 1 6 ~ )  

The condition for consistent solutions leads to the cubic eigenvalue equation (with 
n =0) 

(4 - Es)(q -E ,  +w) (q  - Ey - U )  - V2(2q -E,  - E , ) =  0, (17) 

the solutions of which are q, -0, qs and q, + w. 

simple scheme 
In a spin-1 system the energy levels are equally spaced. If we choose the particularly 

E , = - E  Y = U  0 7  Ep=O (18) 

then the solutions of (17) are 

(19) q, = -9, = [ ( w  -wCJ2+2v 2 ] 1/2  . qj3 = 0, 

However, to obtain aqs/aE, we must differentiate (17) with respect to E, before 
adopting the scheme (18). We thus obtain 

Using the criteria (13) and (14) we find that maxima and the minimum of F$ occur at 

w =oaf v, w =WO (21) 

respectively. Substituting (20) into (12) we obtain 

V2[2(w - wo)2 + V'] 
[ (w - w0l2 + 2 V2I2 

= 

which is identical to the expression obtained by Brossel and Bitter (1952) in the absence 
of natural damping (in their notation, l/Te = 0). 
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